
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201811

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018

Regularization: Add noise, then
marginalize out

2

Last time
Optimization: SGD+Momentum,
Nesterov, RMSProp, Adam

Regularization: Dropout

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

Freeze these

Reinitialize
this and train

Train

Test

Transfer
Learning

2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 20183

Today

- Deep learning hardware
- CPU, GPU, TPU

- Deep learning software
- PyTorch and TensorFlow
- Static vs Dynamic computation graphs

3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 20184

Deep Learning
Hardware

4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 20185

My computer

5

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 20186

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

6

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 20187

Spot the GPUs!
(graphics processing unit)

This image is in the public domain

7

https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 20188

NVIDIA AMDvs

8

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 20189

NVIDIA AMDvs

9

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201810

CPU vs GPU
Cores Clock

Speed
Memory Price Speed

CPU
(Intel Core
i7-7700k)

4
(8 threads with
hyperthreading)

4.2 GHz System
RAM

$339 ~540 GFLOPs FP32

GPU
(NVIDIA
GTX 1080 Ti)

3584 1.6 GHz 11 GB
GDDR5
X

$699 ~11.4 TFLOPs FP32

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201811

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201812

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not
well-optimized, a little unfair)

66x 67x 71x 64x 76x

12

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201813

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

13

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201814

CPU vs GPU
Cores Clock

Speed
Memory Price Speed

CPU
(Intel Core
i7-7700k)

4
(8 threads with
hyperthreading)

4.2 GHz System
RAM

$339 ~540 GFLOPs FP32

GPU
(NVIDIA
GTX 1080 Ti)

3584 1.6 GHz 11 GB
GDDR5
X

$699 ~11.4 TFLOPs FP32

TPU
NVIDIA
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud
TPU

? ? 64 GB
HBM

$6.50
per
hour

~180 TFLOP

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

14

TPU: Specialized
hardware for deep
learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201815

CPU vs GPU
Cores Clock

Speed
Memory Price Speed

CPU
(Intel Core
i7-7700k)

4
(8 threads with
hyperthreading)

4.2 GHz System
RAM

$339 ~540 GFLOPs FP32

GPU
(NVIDIA
GTX 1080 Ti)

3584 1.6 GHz 11 GB
GDDR5
X

$699 ~11.4 TFLOPs FP32

TPU
NVIDIA
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud
TPU

? ? 64 GB
HBM

$6.50
per
hour

~180 TFLOP

15

NOTE: TITAN V
isn’t technically
a “TPU” since
that’s a Google
term, but both
have hardware
specialized for
deep learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201816

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201817

Example: Matrix Multiplication

A x B
B x C

A x C

=

17

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201818

Programming GPUs
● CUDA (NVIDIA only)

○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP
○ New project that automatically converts CUDA code to

something that can run on AMD GPUs
● Udacity: Intro to Parallel Programming

https://www.udacity.com/course/cs344
○ For deep learning just use existing libraries

18

https://github.com/ROCm-Developer-Tools/HIP
https://www.udacity.com/course/cs344

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201819

CPU / GPU Communication

Model
is here

Data is here

19

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201820

CPU / GPU Communication

Model
is here

Data is here

If you aren’t careful, training can
bottleneck on reading data and
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads

to prefetch data

20

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201821

Deep Learning
Software

21

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201822

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

22

Chainer

Deeplearning4j

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201823

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

23

Chainer

Deeplearning4j

We’ll focus on these

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201824

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

24

Chainer

Deeplearning4j

I’ve mostly used these

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201825

Recall: Computational Graphs

x

W

hinge
loss

R

+ L
s (scores)

*

25

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201826

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and

Geoffrey Hinton, 2012. Reproduced with permission.

Recall: Computational Graphs

26

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201827

Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

27

https://twitter.com/karpathy/status/597631909930242048?lang=en

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201828

The point of deep learning frameworks

(1) Quick to develop and test new ideas
(2) Automatically compute gradients
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

28

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201829

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

29

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201830

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

30

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201831

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad:
- Have to compute

our own gradients
- Can’t run on GPU

31

Good:
- Clean API, easy to

write numeric code

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201832

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

32

PyTorch

Looks exactly like numpy!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201833

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

33

PyTorch

PyTorch handles gradients for us!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201834

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

34

PyTorch

Trivial to run on GPU - just construct
arrays on a different device!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201835

PyTorch
(More detail)

35

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201836

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or
learnable weights

36

Autograd: Package for building computational graphs out of
Tensors, and automatically computing gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201837

PyTorch: Versions

For this class we are using PyTorch version 0.4 which was
released Tuesday 4/24

This version makes a lot of changes to some of the core APIs
around autograd, Tensor construction, Tensor datatypes /
devices, etc

Be careful if you are looking at older PyTorch code!

37

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201838

PyTorch: Tensors

38

Running example: Train
a two-layer ReLU
network on random data
with L2 loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201839

PyTorch: Tensors
PyTorch Tensors are just like numpy
arrays, but they can run on GPU.

PyTorch Tensor API looks almost
exactly like numpy!

Here we fit a two-layer net using
PyTorch Tensors:

39

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201840

PyTorch: Tensors
Create random tensors
for data and weights

40

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201841

PyTorch: Tensors

Forward pass: compute
predictions and loss

41

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201842

PyTorch: Tensors

Backward pass:
manually compute
gradients

42

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201843

PyTorch: Tensors

Gradient descent
step on weights

43

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201844

PyTorch: Tensors

To run on GPU, just use a
different device!

44

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201845

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables
autograd

Operations on Tensors with
requires_grad=True cause PyTorch
to build a computational graph

45

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201846

PyTorch: Autograd

We will not want gradients
(of loss) with respect to data

Do want gradients with
respect to weights

46

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201847

PyTorch: Autograd

Forward pass looks exactly
the same as before, but we
don’t need to track
intermediate values -
PyTorch keeps track of
them for us in the graph

47

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201848

PyTorch: Autograd

Compute gradient of loss
with respect to w1 and w2

48

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201849

PyTorch: Autograd

Make gradient step on weights, then zero
them. Torch.no_grad means “don’t build
a computational graph for this part”

49

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201850

PyTorch: Autograd

PyTorch methods that end in underscore
modify the Tensor in-place; methods that
don’t return a new Tensor

50

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201851

PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward
and backward functions for
Tensors

Very similar to modular layers in
A2! Use ctx object to “cache”
values for the backward pass, just
like cache objects from A2

51

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201852

PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward
and backward functions for
Tensors

Very similar to modular layers in
A2! Use ctx object to “cache”
values for the backward pass, just
like cache objects from A2

Define a helper function to make it
easy to use the new function

52

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201853

PyTorch: New Autograd Functions

Can use our new autograd
function in the forward pass

53

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201854

PyTorch: New Autograd Functions

In practice you almost never need
to define new autograd functions!
Only do it when you need custom
backward. In this case we can just
use a normal Python function

54

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201855

PyTorch: nn

Higher-level wrapper for
working with neural nets

Use this! It will make your life
easier

55

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201856

PyTorch: nn

Define our model as a
sequence of layers; each
layer is an object that
holds learnable weights

56

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201857

PyTorch: nn

Forward pass: feed data to
model, and compute loss

57

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201858

PyTorch: nn

58

torch.nn.functional has useful
helpers like loss functions

Forward pass: feed data to
model, and compute loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201859

PyTorch: nn

Backward pass: compute
gradient with respect to all
model weights (they have
requires_grad=True)

59

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201860

PyTorch: nn

Make gradient step on
each model parameter
(with gradients disabled)

60

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201861

PyTorch: optim

Use an optimizer for
different update rules

61

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201862

PyTorch: optim

After computing gradients, use
optimizer to update params
and zero gradients

62

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201863

Aside: Lua Torch
Direct ancestor of PyTorch
(they used to share a lot of C
backend)

Written in Lua, not Python

Torch has Tensors and Modules
like PyTorch, but no full-featured
autograd; much more painful to
work with

More details: Check 2016 slides

63

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201864

PyTorch: nn
Define new Modules
A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or other
modules

You can define your own Modules
using autograd!

64

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201865

PyTorch: nn
Define new Modules

Define our whole model
as a single Module

65

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201866

PyTorch: nn
Define new Modules

Initializer sets up two
children (Modules can
contain modules)

66

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201867

PyTorch: nn
Define new Modules

Define forward pass using
child modules

No need to define
backward - autograd will
handle it

67

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201868

PyTorch: nn
Define new Modules

Construct and train an
instance of our model

68

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201869

PyTorch: nn
Define new Modules
Very common to mix and match
custom Module subclasses and
Sequential containers

69

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201870

PyTorch: nn
Define new Modules

Define network component
as a Module subclass

70

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201871

PyTorch: nn
Define new Modules

Stack multiple instances of the
component in a sequential

71

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 20187272

x

h1,1 h1,2

h1

FC FC

✕
relu

h2,1 h2,2

FC FC

✕
relu

h1

y

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201873

PyTorch: DataLoaders

A DataLoader wraps a
Dataset and provides
minibatching, shuffling,
multithreading, for you

When you need to load
custom data, just write
your own Dataset class

73

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201874

PyTorch: DataLoaders

Iterate over loader to form
minibatches

74

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201875

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision
https://github.com/pytorch/vision

75

https://github.com/pytorch/vision

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201876

PyTorch: Visdom

This image is licensed under CC-BY 4.0; no changes were made to the image

Visualization tool: add
logging to your code, then
visualize in a browser

Can’t visualize
computational graph
structure (yet?)

https://github.com/facebookresearch/visdom

76

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/facebookresearch/visdom

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201877

PyTorch: Dynamic Computation Graphs

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201878

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201879

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND
perform computation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201880

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND
perform computation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201881

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2
(for backprop) AND perform computation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201882

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Throw away the graph, backprop path, and
rebuild it from scratch on every iteration

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201883

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND
perform computation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201884

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND
perform computation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201885

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2
(for backprop) AND perform computation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201886

PyTorch: Dynamic Computation Graphs

Building the graph and
computing the graph happen at
the same time.

Seems inefficient, especially if we
are building the same graph over
and over again...

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201887

Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph
describing our computation
(including finding paths for
backprop)

Step 2: Reuse the same graph on
every iteration

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201888

TensorFlow

88

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201889

TensorFlow:
Neural Net

(Assume imports at the
top of each snipppet)

89

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201890

TensorFlow:
Neural Net

90

First define
computational graph

Then run the graph
many times

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201891

TensorFlow:
Neural Net

Create placeholders for
input x, weights w1 and
w2, and targets y

91

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201892

TensorFlow:
Neural Net

Forward pass: compute prediction for
y and loss. No computation - just
building graph

92

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201893

TensorFlow:
Neural Net

Tell TensorFlow to compute loss of
gradient with respect to w1 and w2.
No compute - just building the graph

93

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201894

TensorFlow:
Neural Net

94

Find paths between loss and w1, w2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201895

TensorFlow:
Neural Net

95

Add new operators to the graph which
compute grad_w1 and grad_w2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201896

TensorFlow:
Neural Net

Now done building our graph,
so we enter a session so we
can actually run the graph

96

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201897

TensorFlow:
Neural Net

Create numpy arrays that will
fill in the placeholders above

97

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201898

TensorFlow:
Neural Net

Run the graph: feed in the numpy
arrays for x, y, w1, and w2; get
numpy arrays for loss, grad_w1,
and grad_w2

98

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201899

TensorFlow:
Neural Net

Train the network: Run
the graph over and over,
use gradient to update
weights

99

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018100

TensorFlow:
Neural Net

Train the network: Run
the graph over and over,
use gradient to update
weights

Problem: copying
weights between CPU /
GPU each step

100

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018101

TensorFlow:
Neural Net

Change w1 and w2 from
placeholder (fed on
each call) to Variable
(persists in the graph
between calls)

101

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018102

TensorFlow:
Neural Net

Add assign operations
to update w1 and w2 as
part of the graph!

102

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018103

TensorFlow:
Neural Net

Run graph once to
initialize w1 and w2

Run many times to train

103

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018104

TensorFlow:
Neural Net

Problem: loss not going
down! Assign calls not
actually being executed!

104

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018105

TensorFlow:
Neural Net

Add dummy graph node
that depends on updates

Tell TensorFlow to
compute dummy node

105

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018106

TensorFlow:
Optimizer

Can use an optimizer to
compute gradients and
update weights

Remember to execute the
output of the optimizer!

106

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018107

TensorFlow:
Loss

Use predefined
common lossees

107

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018108

TensorFlow:
Layers

Use He
initializer

tf.layers automatically
sets up weight and
(and bias) for us!

108

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018109

Keras: High-Level
Wrapper
Keras is a layer on top of
TensorFlow, makes common
things easy to do

(Used to be third-party, now
merged into TensorFlow)

109

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018110

Keras: High-Level
Wrapper

110

Define model as a
sequence of layers

Get output by
calling the model

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018111

Keras: High-Level
Wrapper

111

Keras can handle the
training loop for you!
No sessions or
feed_dict

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018112

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator)
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn)
Sonnet (https://github.com/deepmind/sonnet)

TFLearn (http://tflearn.org/)

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

TensorFlow: High-Level Wrappers

112

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018113

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator)
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn)
Sonnet (https://github.com/deepmind/sonnet)

TFLearn (http://tflearn.org/)

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

TensorFlow: High-Level Wrappers

113

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018114

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator)
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn)
Sonnet (https://github.com/deepmind/sonnet)

TFLearn (http://tflearn.org/)

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

TensorFlow: High-Level Wrappers

114

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018115

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator)
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn)
Sonnet (https://github.com/deepmind/sonnet)

TFLearn (http://tflearn.org/)

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

TensorFlow: High-Level Wrappers

115

Ships with TensorFlow

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018116

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator)
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) DEPRECATED
Sonnet (https://github.com/deepmind/sonnet)

TFLearn (http://tflearn.org/)

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

TensorFlow: High-Level Wrappers

116

Ships with TensorFlow

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018117

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator)
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) DEPRECATED
Sonnet (https://github.com/deepmind/sonnet)

TensorFlow: High-Level Wrappers

117

Ships with TensorFlow

By DeepMind

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018118

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator)
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) DEPRECATED
Sonnet (https://github.com/deepmind/sonnet)

TFLearn (http://tflearn.org/)

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

TensorFlow: High-Level Wrappers

118

Ships with TensorFlow

By DeepMind

Third-Party

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018119

tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)

TF-Slim: (https://github.com/tensorflow/models/tree/master/slim/nets)

TensorFlow: Pretrained Models

119

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

Freeze these

Reinitialize
this and train

Transfer Learning

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://github.com/tensorflow/models/tree/master/slim/nets

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018120

TensorFlow: Tensorboard
Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

120

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018121

TensorFlow: Distributed Version

https://www.tensorflow.org/deploy/distributed

Split one graph
over multiple
machines!

121

https://www.tensorflow.org/deploy/distributed

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018122

TensorFlow: Tensor Processing Units

Google Cloud TPU
= 180 TFLOPs of compute!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018123

TensorFlow: Tensor Processing Units

Google Cloud TPU
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018124

TensorFlow: Tensor Processing Units

Google Cloud TPU
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute

NVIDIA Tesla P100 = 11 TFLOPs of compute
GTX 580 = 0.2 TFLOPs

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018125

TensorFlow: Tensor Processing Units

Google Cloud TPU Pod
= 64 Cloud TPUs
= 11.5 PFLOPs of compute!

Google Cloud TPU
= 180 TFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018126

Static vs Dynamic Graphs
TensorFlow: Build graph once, then
run many times (static)

PyTorch: Each forward pass defines
a new graph (dynamic)

Build
graph

Run each
iteration

New graph each iteration

126

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018127

Static vs Dynamic: Optimization
With static graphs,
framework can
optimize the
graph for you
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with
fused operations

Conv+ReLU
Conv+ReLU

127

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018128

Static vs Dynamic: Serialization

Once graph is built, can
serialize it and run it
without the code that
built the graph!

Graph building and execution
are intertwined, so always
need to keep code around

Static Dynamic

128

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018129

Static vs Dynamic: Conditional

y =
w1 * x if z > 0
w2 * x otherwise

129

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018130

Static vs Dynamic: Conditional

y =
w1 * x if z > 0
w2 * x otherwise

PyTorch: Normal Python

130

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018131

Static vs Dynamic: Conditional

y =
w1 * x if z > 0
w2 * x otherwise

PyTorch: Normal Python

TensorFlow: Special TF
control flow operator!

131

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018132

Static vs Dynamic: Loops

yt = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*

132

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018133

Static vs Dynamic: Loops

yt = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*
PyTorch: Normal Python

133

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018134

Static vs Dynamic: Loops

yt = (yt-1+ xt) * w

PyTorch: Normal Python

TensorFlow: Special TF control flow

134

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018135

Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

135

- Recurrent networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018136

Dynamic Graph Applications

The cat ate a big rat

136

- Recurrent networks
- Recursive networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018137

Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

137

Figure copyright Justin Johnson, 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018138

Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)

138

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018139

PyTorch vs TensorFlow, Static vs
Dynamic

PyTorch
Dynamic Graphs

139

TensorFlow
Static Graphs

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018140

PyTorch
Dynamic Graphs

140

TensorFlow
Static Graphs

PyTorch vs TensorFlow, Static vs
Dynamic

Lines are blurring! PyTorch is adding static features,
and TensorFlow is adding dynamic features.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018141

Dynamic TensorFlow: Dynamic Batching

Looks et al, “Deep Learning with Dynamic Computation Graphs”, ICLR 2017
https://github.com/tensorflow/fold

TensorFlow Fold make dynamic
graphs easier in TensorFlow
through dynamic batching

141

https://github.com/tensorflow/fold

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018142142

Dynamic TensorFlow: Eager Execution
TensorFlow 1.7 added
eager execution which
allows dynamic graphs!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018143143

Dynamic TensorFlow: Eager Execution

Enable eager mode at
the start of the program:
it’s a global switch

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018144144

Dynamic TensorFlow: Eager Execution

These calls to
tf.random_normal produce
concrete values! No need
for placeholders / sessions

Wrap values in a
tfe.Variable if we might
want to compute grads for
them

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018145145

Dynamic TensorFlow: Eager Execution

Operations scoped under a
GradientTape will build a
dynamic graph, similar to
PyTorch

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018146146

Dynamic TensorFlow: Eager Execution

Use the tape to compute
gradients, like .backward()
in PyTorch. The print
statement works!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018147147

Dynamic TensorFlow: Eager Execution
Eager execution still pretty
new, not fully supported in
all TensorFlow APIs

Try it out!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018148148

Static PyTorch: Caffe2 https://caffe2.ai/

● Deep learning framework developed by Facebook
● Static graphs, somewhat similar to TensorFlow
● Core written in C++
● Nice Python interface
● Can train model in Python, then serialize and deploy

without Python
● Works on iOS / Android, etc

https://caffe2.ai/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018149149

Static PyTorch: ONNX Support

ONNX is an open-source standard for neural network models

Goal: Make it easy to train a network in one framework, then run
it in another framework

Supported by PyTorch, Caffe2, Microsoft CNTK, Apache MXNet

https://github.com/onnx/onnx

https://github.com/onnx/onnx

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018150150

Static PyTorch: ONNX Support
You can export a PyTorch model to
ONNX

Run the graph on a dummy input, and
save the graph to a file

Will only work if your model doesn’t
actually make use of dynamic graph -
must build same graph on every
forward pass, no loops / conditionals

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018151151

Static PyTorch: ONNX Support
graph(%0 : Float(64, 1000)
 %1 : Float(100, 1000)
 %2 : Float(100)
 %3 : Float(10, 100)
 %4 : Float(10)) {
 %5 : Float(64, 100) =
onnx::Gemm[alpha=1, beta=1, broadcast=1,
transB=1](%0, %1, %2), scope:
Sequential/Linear[0]
 %6 : Float(64, 100) = onnx::Relu(%5),
scope: Sequential/ReLU[1]
 %7 : Float(64, 10) = onnx::Gemm[alpha=1,
beta=1, broadcast=1, transB=1](%6, %3,
%4), scope: Sequential/Linear[2]
 return (%7);
}

After exporting to ONNX, can
run the PyTorch model in Caffe2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018152152

Static PyTorch: Future???

https://github.com/pytorch/pytorch/commit/90afedb6e222d430d5c9333ff27adb42aa4bb900

https://github.com/pytorch/pytorch/commit/90afedb6e222d430d5c9333ff27adb42aa4bb900

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018153

PyTorch vs TensorFlow, Static vs
Dynamic

PyTorch
Dynamic Graphs

Static: ONNX, Caffe2

153

TensorFlow
Static Graphs

Dynamic: Eager

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018154

My Advice:
PyTorch is my personal favorite. Clean API, dynamic graphs make
it very easy to develop and debug. Can build model in PyTorch then
export to Caffe2 with ONNX for production / mobile

TensorFlow is a safe bet for most projects. Not perfect but has
huge community, wide usage. Can use same framework for
research and production. Probably use a high-level framework. Only
choice if you want to run on TPUs.

154

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018155

Next Time:
CNN Architecture Case Studies

155

