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Regularization: Add noise, then 
marginalize out

2
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Nesterov, RMSProp, Adam
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Today

- Deep learning hardware
- CPU, GPU, TPU

- Deep learning software
- PyTorch and TensorFlow
- Static vs Dynamic computation graphs

3
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Deep Learning 
Hardware

4
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My computer

5
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Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

6

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Spot the GPUs!
(graphics processing unit)

This image is in the public domain
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https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg
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NVIDIA AMDvs

8
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NVIDIA AMDvs

9
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CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$339 ~540 GFLOPs FP32

GPU
(NVIDIA
GTX 1080 Ti)

3584 1.6 GHz 11 GB 
GDDR5
X

$699 ~11.4 TFLOPs FP32

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks

10
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CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not 
well-optimized, a little unfair)

66x 67x 71x 64x 76x

12
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CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than 
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

13
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CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$339 ~540 GFLOPs FP32

GPU
(NVIDIA
GTX 1080 Ti)

3584 1.6 GHz 11 GB 
GDDR5
X

$699 ~11.4 TFLOPs FP32

TPU
NVIDIA 
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB 
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud 
TPU

? ? 64 GB 
HBM

$6.50 
per 
hour

~180 TFLOP

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks

14

TPU: Specialized 
hardware for deep 
learning
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CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$339 ~540 GFLOPs FP32

GPU
(NVIDIA
GTX 1080 Ti)

3584 1.6 GHz 11 GB 
GDDR5
X

$699 ~11.4 TFLOPs FP32

TPU
NVIDIA 
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB 
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud 
TPU

? ? 64 GB 
HBM

$6.50 
per 
hour

~180 TFLOP

15

NOTE: TITAN V 
isn’t technically 
a “TPU” since 
that’s a Google 
term, but both 
have hardware 
specialized for 
deep learning 
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Example: Matrix Multiplication

A x B
B x C

A x C

=

17
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Programming GPUs
● CUDA (NVIDIA only)

○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP 
○ New project that automatically converts CUDA code to 

something that can run on AMD GPUs
● Udacity: Intro to Parallel Programming 

https://www.udacity.com/course/cs344
○ For deep learning just use existing libraries

18

https://github.com/ROCm-Developer-Tools/HIP
https://www.udacity.com/course/cs344
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CPU / GPU Communication

Model 
is here

Data is here

19
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CPU / GPU Communication

Model 
is here

Data is here

If you aren’t careful, training can 
bottleneck on reading data and 
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads 

to prefetch data

20
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Deep Learning 
Software

21
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

22

Chainer 

Deeplearning4j 
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

23

Chainer 

Deeplearning4j 

We’ll focus on these
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

24

Chainer 

Deeplearning4j 

I’ve mostly used these
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Recall: Computational Graphs

x

W

hinge 
loss

R

+ L
s (scores)

*

25
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input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Recall: Computational Graphs

26
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Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

27

https://twitter.com/karpathy/status/597631909930242048?lang=en
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The point of deep learning frameworks

(1) Quick to develop and test new ideas
(2) Automatically compute gradients
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

28
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

29
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

30
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad: 
- Have to compute 

our own gradients
- Can’t run on GPU

31

Good: 
- Clean API, easy to 

write numeric code
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

32

PyTorch

Looks exactly like numpy!
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

33

PyTorch

PyTorch handles gradients for us!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201834

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

34

PyTorch

Trivial to run on GPU - just construct 
arrays on a different device!
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PyTorch
(More detail)

35
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PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

36

Autograd: Package for building computational graphs out of 
Tensors, and automatically computing gradients
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PyTorch: Versions

For this class we are using PyTorch version 0.4 which was 
released Tuesday 4/24

This version makes a lot of changes to some of the core APIs 
around autograd, Tensor construction, Tensor datatypes / 
devices, etc

Be careful if you are looking at older PyTorch code!

37
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PyTorch: Tensors

38

Running example: Train 
a two-layer ReLU 
network on random data 
with L2 loss
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PyTorch: Tensors
PyTorch Tensors are just like numpy 
arrays, but they can run on GPU.

PyTorch Tensor API looks almost 
exactly like numpy!

Here we fit a two-layer net using 
PyTorch Tensors:

39
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PyTorch: Tensors
Create random tensors 
for data and weights

40
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PyTorch: Tensors

Forward pass: compute 
predictions and loss

41
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PyTorch: Tensors

Backward pass: 
manually compute 
gradients

42
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PyTorch: Tensors

Gradient descent 
step on weights

43
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PyTorch: Tensors

To run on GPU, just use a 
different device!

44
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PyTorch: Autograd

Creating Tensors with 
requires_grad=True enables 
autograd

Operations on Tensors with 
requires_grad=True cause PyTorch 
to build a computational graph

45
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PyTorch: Autograd

We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights 

46
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PyTorch: Autograd

Forward pass looks exactly 
the same as before, but we 
don’t need to track 
intermediate values - 
PyTorch keeps track of 
them for us in the graph

47
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PyTorch: Autograd

Compute gradient of loss 
with respect to w1 and w2

48
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PyTorch: Autograd

Make gradient step on weights, then zero 
them. Torch.no_grad means “don’t build 
a computational graph for this part”

49
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PyTorch: Autograd

PyTorch methods that end in underscore 
modify the Tensor in-place; methods that 
don’t return a new Tensor

50
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PyTorch: New Autograd Functions
Define your own autograd 
functions by writing forward 
and backward functions for 
Tensors

Very similar to modular layers in 
A2! Use ctx object to “cache” 
values for the backward pass, just 
like cache objects from A2

51
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PyTorch: New Autograd Functions
Define your own autograd 
functions by writing forward 
and backward functions for 
Tensors

Very similar to modular layers in 
A2! Use ctx object to “cache” 
values for the backward pass, just 
like cache objects from A2

Define a helper function to make it 
easy to use the new function

52
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PyTorch: New Autograd Functions

Can use our new autograd 
function in the forward pass

53
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PyTorch: New Autograd Functions

In practice you almost never need 
to define new autograd functions! 
Only do it when you need custom 
backward. In this case we can just 
use a normal Python function

54
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PyTorch: nn

Higher-level wrapper for 
working with neural nets

Use this! It will make your life 
easier

55
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PyTorch: nn

Define our model as a 
sequence of layers; each 
layer is an object that 
holds learnable weights

56
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PyTorch: nn

Forward pass: feed data to 
model, and compute loss

57



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201858

PyTorch: nn

58

torch.nn.functional has useful 
helpers like loss functions

Forward pass: feed data to 
model, and compute loss
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PyTorch: nn

Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)

59
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PyTorch: nn

Make gradient step on 
each model parameter
(with gradients disabled)

60
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PyTorch: optim

Use an optimizer for 
different update rules

61



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201862

PyTorch: optim

After computing gradients, use 
optimizer to update params 
and zero gradients

62
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Aside: Lua Torch
Direct ancestor of PyTorch 
(they used to share a lot of C 
backend)

Written in Lua, not Python

Torch has Tensors and Modules 
like PyTorch, but no full-featured 
autograd; much more painful to 
work with

More details: Check 2016 slides

63
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PyTorch: nn
Define new Modules
A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or other 
modules

You can define your own Modules 
using autograd!

64
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PyTorch: nn
Define new Modules

Define our whole model 
as a single Module

65
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PyTorch: nn
Define new Modules

Initializer sets up two 
children (Modules can 
contain modules)

66
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PyTorch: nn
Define new Modules

Define forward pass using 
child modules

No need to define 
backward - autograd will 
handle it

67
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PyTorch: nn
Define new Modules

Construct and train an 
instance of our model

68
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PyTorch: nn
Define new Modules
Very common to mix and match 
custom Module subclasses and 
Sequential containers

69
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PyTorch: nn
Define new Modules

Define network component 
as a Module subclass

70
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PyTorch: nn
Define new Modules

Stack multiple instances of the 
component in a sequential

71
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x

h1,1 h1,2

h1

FC FC

✕
relu

h2,1 h2,2

FC FC

✕
relu

h1

y
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PyTorch: DataLoaders

A DataLoader wraps a 
Dataset and provides 
minibatching, shuffling, 
multithreading, for you

When you need to load 
custom data, just write 
your own Dataset class

73
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PyTorch: DataLoaders

Iterate over loader to form 
minibatches

74
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PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision 

75

https://github.com/pytorch/vision


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201876

PyTorch: Visdom

This image is licensed under CC-BY 4.0; no changes were made to the image

Visualization tool: add 
logging to your code, then 
visualize in a browser

Can’t visualize 
computational graph 
structure (yet?)

https://github.com/facebookresearch/visdom 

76

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/facebookresearch/visdom
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PyTorch: Dynamic Computation Graphs
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Throw away the graph, backprop path, and 
rebuild it from scratch on every iteration
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201885

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation
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PyTorch: Dynamic Computation Graphs

Building the graph and 
computing the graph happen at 
the same time.

Seems inefficient, especially if we 
are building the same graph over 
and over again...
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Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph 
describing our computation 
(including finding paths for 
backprop)

Step 2: Reuse the same graph on 
every iteration
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TensorFlow

88
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TensorFlow: 
Neural Net

(Assume imports at the 
top of each snipppet)

89
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TensorFlow: 
Neural Net

90

First define 
computational graph

Then run the graph 
many times
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TensorFlow: 
Neural Net

Create placeholders for 
input x, weights w1 and 
w2, and targets y

91



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 201892

TensorFlow: 
Neural Net

Forward pass: compute prediction for 
y and loss. No computation - just 
building graph 

92
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TensorFlow: 
Neural Net

Tell TensorFlow to compute loss of 
gradient with respect to w1 and w2. 
No compute - just building the graph

93
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TensorFlow: 
Neural Net

94

Find paths between loss and w1, w2
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TensorFlow: 
Neural Net

95

Add new operators to the graph which 
compute grad_w1 and grad_w2
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TensorFlow: 
Neural Net

Now done building our graph, 
so we enter a session so we 
can actually run the graph

96
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TensorFlow: 
Neural Net

Create numpy arrays that will 
fill in the placeholders above

97
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TensorFlow: 
Neural Net

Run the graph: feed in the numpy 
arrays for x, y, w1, and w2; get 
numpy arrays for loss, grad_w1, 
and grad_w2

98
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TensorFlow: 
Neural Net

Train the network: Run 
the graph over and over, 
use gradient to update 
weights

99
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TensorFlow: 
Neural Net

Train the network: Run 
the graph over and over, 
use gradient to update 
weights

Problem: copying 
weights between CPU / 
GPU each step

100
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TensorFlow: 
Neural Net

Change w1 and w2 from 
placeholder (fed on 
each call) to Variable 
(persists in the graph 
between calls)

101
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TensorFlow: 
Neural Net

Add assign operations 
to update w1 and w2 as 
part of the graph!
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TensorFlow: 
Neural Net

Run graph once to 
initialize w1 and w2

Run many times to train
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TensorFlow: 
Neural Net

Problem: loss not going 
down! Assign calls not 
actually being executed!

104



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018105

TensorFlow: 
Neural Net

Add dummy graph node 
that depends on updates

Tell TensorFlow to 
compute dummy node

105
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TensorFlow: 
Optimizer

Can use an optimizer to 
compute gradients and 
update weights

Remember to execute the 
output of the optimizer!
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TensorFlow: 
Loss

Use predefined 
common lossees

107
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TensorFlow: 
Layers

Use He 
initializer

tf.layers automatically 
sets up weight and 
(and bias) for us!

108
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Keras: High-Level 
Wrapper
Keras is a layer on top of 
TensorFlow, makes common 
things easy to do

(Used to be third-party, now 
merged into TensorFlow)

109
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Keras: High-Level 
Wrapper

110

Define model as a 
sequence of layers

Get output by 
calling the model
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Keras: High-Level 
Wrapper

111

Keras can handle the 
training loop for you! 
No sessions or 
feed_dict
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator) 
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim) 
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) 
Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers
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https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator) 
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim) 
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) 
Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers
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https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
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https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator) 
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim) 
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) 
Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers
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https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
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https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator) 
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim) 
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) 
Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers
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Ships with TensorFlow

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator) 
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim) 
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) DEPRECATED
Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers
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Ships with TensorFlow

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator) 
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim) 
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) DEPRECATED
Sonnet (https://github.com/deepmind/sonnet) 

TensorFlow: High-Level Wrappers
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Ships with TensorFlow

By DeepMind

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator) 
tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim) 
tf.contrib.learn (https://www.tensorflow.org/api_docs/python/tf/contrib/learn) DEPRECATED
Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers
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Ships with TensorFlow

By DeepMind

Third-Party

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://www.tensorflow.org/api_docs/python/tf/contrib/learn
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)

TF-Slim: (https://github.com/tensorflow/models/tree/master/slim/nets)

TensorFlow: Pretrained Models

119

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

Freeze these

Reinitialize 
this and train

Transfer  Learning

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://github.com/tensorflow/models/tree/master/slim/nets
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TensorFlow: Tensorboard
Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

120
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TensorFlow: Distributed Version

https://www.tensorflow.org/deploy/distributed 

Split one graph 
over multiple 
machines!

121

https://www.tensorflow.org/deploy/distributed
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TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!
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TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute
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TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute

NVIDIA Tesla P100 = 11 TFLOPs of compute
GTX 580 = 0.2 TFLOPs
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TensorFlow: Tensor Processing Units

Google Cloud TPU Pod
= 64 Cloud TPUs
= 11.5 PFLOPs of compute!

Google Cloud TPU 
= 180 TFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu 

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu
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Static vs Dynamic Graphs
TensorFlow: Build graph once, then 
run many times (static)

PyTorch: Each forward pass defines 
a new graph (dynamic)

Build 
graph

Run each 
iteration

New graph each iteration

126
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Static vs Dynamic: Optimization
With static graphs, 
framework can 
optimize the 
graph for you 
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU
Conv+ReLU

127
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Static vs Dynamic: Serialization

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

Graph building and execution 
are intertwined, so always 
need to keep code around

Static Dynamic

128
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Static vs Dynamic: Conditional

y = 
w1 * x   if z > 0
w2 * x   otherwise 

129
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Static vs Dynamic: Conditional

y = 
w1 * x   if z > 0
w2 * x   otherwise 

PyTorch: Normal Python

130
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Static vs Dynamic: Conditional

y = 
w1 * x   if z > 0
w2 * x   otherwise 

PyTorch: Normal Python

TensorFlow: Special TF 
control flow operator!

131
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Static vs Dynamic: Loops

yt  = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*

132
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Static vs Dynamic: Loops

yt  = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*
PyTorch: Normal Python

133
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Static vs Dynamic: Loops

yt  = (yt-1+ xt) * w

PyTorch: Normal Python

TensorFlow: Special TF control flow

134
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Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

135

- Recurrent networks
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Dynamic Graph Applications

The cat ate a big rat

136

- Recurrent networks
- Recursive networks
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Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

137

Figure copyright Justin Johnson, 2017. Reproduced with permission.
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Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)

138



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018139

PyTorch vs TensorFlow, Static vs 
Dynamic

PyTorch
Dynamic Graphs

139

TensorFlow
Static Graphs
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PyTorch
Dynamic Graphs

140

TensorFlow
Static Graphs

PyTorch vs TensorFlow, Static vs 
Dynamic

Lines are blurring! PyTorch is adding static features, 
and TensorFlow is adding dynamic features.
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Dynamic TensorFlow: Dynamic Batching

Looks et al, “Deep Learning with Dynamic Computation Graphs”, ICLR 2017
https://github.com/tensorflow/fold

TensorFlow Fold make dynamic 
graphs easier in TensorFlow 
through dynamic batching

141

https://github.com/tensorflow/fold
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Dynamic TensorFlow: Eager Execution
TensorFlow 1.7 added 
eager execution which 
allows dynamic graphs!
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Dynamic TensorFlow: Eager Execution

Enable eager mode at 
the start of the program: 
it’s a global switch
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Dynamic TensorFlow: Eager Execution

These calls to 
tf.random_normal produce 
concrete values! No need 
for placeholders / sessions

Wrap values in a 
tfe.Variable if we might 
want to compute grads for 
them
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Dynamic TensorFlow: Eager Execution

Operations scoped under a 
GradientTape will build a 
dynamic graph, similar to 
PyTorch
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Dynamic TensorFlow: Eager Execution

Use the tape to compute 
gradients, like .backward() 
in PyTorch. The print 
statement works!
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Dynamic TensorFlow: Eager Execution
Eager execution still pretty 
new, not fully supported in 
all TensorFlow APIs

Try it out!
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Static PyTorch: Caffe2 https://caffe2.ai/

● Deep learning framework developed by Facebook
● Static graphs, somewhat similar to TensorFlow
● Core written in C++
● Nice Python interface
● Can train model in Python, then serialize and deploy 

without Python
● Works on iOS / Android, etc

https://caffe2.ai/
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Static PyTorch: ONNX Support

ONNX is an open-source standard for neural network models 

Goal: Make it easy to train a network in one framework, then run 
it in another framework

Supported by PyTorch, Caffe2, Microsoft CNTK, Apache MXNet

https://github.com/onnx/onnx

https://github.com/onnx/onnx
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Static PyTorch: ONNX Support
You can export a PyTorch model to 
ONNX

Run the graph on a dummy input, and 
save the graph to a file

Will only work if your model doesn’t 
actually make use of dynamic graph - 
must build same graph on every 
forward pass, no loops / conditionals



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018151151

Static PyTorch: ONNX Support
graph(%0 : Float(64, 1000)
      %1 : Float(100, 1000)
      %2 : Float(100)
      %3 : Float(10, 100)
      %4 : Float(10)) {
  %5 : Float(64, 100) = 
onnx::Gemm[alpha=1, beta=1, broadcast=1, 
transB=1](%0, %1, %2), scope: 
Sequential/Linear[0]
  %6 : Float(64, 100) = onnx::Relu(%5), 
scope: Sequential/ReLU[1]
  %7 : Float(64, 10) = onnx::Gemm[alpha=1, 
beta=1, broadcast=1, transB=1](%6, %3, 
%4), scope: Sequential/Linear[2]
  return (%7);
}

After exporting to ONNX, can 
run the PyTorch model in Caffe2
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Static PyTorch: Future???

https://github.com/pytorch/pytorch/commit/90afedb6e222d430d5c9333ff27adb42aa4bb900 

https://github.com/pytorch/pytorch/commit/90afedb6e222d430d5c9333ff27adb42aa4bb900
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PyTorch vs TensorFlow, Static vs 
Dynamic

PyTorch
Dynamic Graphs

Static: ONNX, Caffe2

153

TensorFlow
Static Graphs

Dynamic: Eager
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My Advice:
PyTorch is my personal favorite. Clean API, dynamic graphs make 
it very easy to develop and debug. Can build model in PyTorch then 
export to Caffe2 with ONNX for production / mobile

TensorFlow is a safe bet for most projects. Not perfect but has 
huge community, wide usage. Can use same framework for 
research and production. Probably use a high-level framework. Only 
choice if you want to run on TPUs.
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Next Time: 
CNN Architecture Case Studies
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